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For a small and ideally imperfect crystal, a method for calculating n-beam X-ray

diffraction intensities has been developed on the basis of macroscopic intensity

exchanges among the beams. This kinematical formulation results in a set of

simultaneous equations that can be solved by numerical calculation. To validate

the macroscopic formulae, the Darwin intensity transfer equations, which

describe microscopic interactions by both diffraction and absorption, are

integrated on a spherical crystal. With the hypotheses that one beam contributes

to other beams as proportional to its observed intensity, the macroscopic and

microscopic formulations are proved to be equivalent; quantitative evaluation of

the n-beam effect thereby becomes available for practical experiments using a

specimen with finite cross section of X-ray absorption. Examples of the  -scan

simulation on Si 111 and 222 are presented to characterize the present method,

demonstrating the reasonable behaviour of the observed diffraction intensity

while the linear absorption coefficient and the specimen size are varied.

1. Introduction

Multiple X-ray diffraction by n-beam interaction arises when

more than one reciprocal-lattice point rests on the Ewald

sphere simultaneously. The observed diffraction intensity is

modified by the n-beam interaction, and the magnitude of the

modification is comparable with that caused by absorption and

extinction. Moreover, controlling the geometrical arrange-

ment may fail to avoid multiple diffractions, since the prob-

ability of encountering the phenomenon is higher for X-rays

with shorter wavelength, which is generally recommended to

reduce absorption. Therefore, some numerical methods for

quantitative evaluation of the effect are required for accurate

data collection.

The knowledge of this phenomenon in terms of either the

kinematical or the dynamical theory of X-ray diffraction has

been reviewed by Chang (1984), and recently revived by

Authier (2003). Although much progress has been achieved in

dynamical theory (Thorkildsen & Larsen, 2002; Okitsu, 2003),

the kinematical theory still has an advantage in its simplicity

for experimental studies that treat large numbers of beams

(Tanaka & Saito, 1975; Hauback et al., 1990; Tanaka et al.,

1994). In this article, we revive this kinematical theory to treat

the phase-independent part of the phenomena, so-called

Umweganregung and Aufhellung.

For planar shaped crystals with larger size than the cross

section of the incident beam, Moon & Shull (1964) utilized the

Darwin intensity transfer equations. The beam intensities

inside the crystal are described as a function of the length of

the path on which the beam has travelled. As shown in Fig.

1(a), the path lengths at a point depend on only the pene-

tration depth x from the surface. This reduces the intensity

transfer equations to normal differential equations of first

order with simple boundary conditions, and thereby the

intensities can be approximated by the Taylor-series expan-

sion. The approximation up to the second order has commonly

been accepted to interpret the experimental results, e.g.

Coppens (1968). After the strict solutions had been given for a

few special cases at n = 2, 3, 4, 6 (Zachariasen, 1965), the

formal solution of the equations for unlimited n was derived

by Parente & Caticha-Ellis (1974) in the infinite order of the

series expansion, and then applied in practice (Parente et al.,

1994; Mazzocchi & Parente, 1994).

Figure 1
X-ray beam paths through a specimen crystal. The intensities of the
diffracted beams are written as I1 and I2. (a) For a planar crystal, the path
length li is a function of the penetration depth x: li ¼ x=�i, where �i

denotes the direction cosine to the normal to the crystal surface. (b) For a
spherical crystal, there is no explicit relation among the path lengths.
Belonging to the same beam, two beam paths, li and l0i differ even at the
same depth x; therefore, Ii 6¼ I 0i .
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In contrast, the application of the equations to a small

crystal bathed in incident X-rays has not been established. The

path lengths in a small spherical crystal have no clear relation

among them (see Fig. 1b). The expression remains in partial

differential equations on the three-dimensional volume, and

the boundary conditions cannot be simplified. No solution of

these equations is known, though selecting a small and

spherical crystal for a diffraction experiment suppresses the

absorption effect and improves the angular resolution.

On the other hand, Soejima et al. (1985) have presented an

expression of n-beam diffraction intensity for a small spherical

crystal without solving the intensity transfer equations.

Instead, they have adopted simple simultaneous equations

also based on the kinematical theory. The final expression is

nearly equal to the second-order Taylor-series approximation

of the intensity transfer equations, especially for the Umwe-

ganregung case (Renninger, 1937). The validity of the method

has experimentally been proved in the application to small

crystals bathed in incident X-rays, for both Umweganregung

and Aufhellung cases (Okazaki, Ohe & Soejima, 1988;

Okazaki, Soejima et al., 1988). But the derivation process and

the assumptions on which the calculation is based are not clear

so that it is difficult to discuss the approximation level.

Moreover, the fundamental simultaneous equations are not

symmetrical for the intensities of each beams. The method

thus contains some ambiguity in its foundation in spite of its

effectiveness.

In the next section, we firstly revise the theory given by

Soejima et al. (1985) from the viewpoint of symmetry. The

resulting formulae are given in matrix form, as a macroscopic

intensity equation. Then, to examine the microscopic foun-

dation of the formulae, we attempt to integrate the intensity

transfer equations for small spherical crystals. With a simple

hypothesis, it is confirmed that the integrated equations are

equivalent to the macroscopic equations mentioned above.

Some example calculations of the  -scan profile on Si 111 and

222 are presented to characterize the present theory on the

effect of the hypotheses and the absorption coefficient.

2. Kinematical theory of n-beam interaction

2.1. Macroscopic formulation

The formulation of the three-beam case in Soejima et al.

(1985) starts with the equation

Ih ¼ ðI0 � IopÞrhNh; ð1Þ

where I0, Ih and Iop are the intensities of the incident beam,

and primary and secondary diffracted beam, respectively.

Kinematical reflectivity including the Lorentz–polarization

factor is denoted by Nh and the transmission factor of the

crystal by rh.

This expression implies that the intensity of the incident

beam is modified by the secondary diffraction, and the

primary diffraction intensity is proportional to the modified

intensity. Although the idea is effective, (1) is difficult to

interpret; the direct subtraction of the two intensities is

unreasonable since the secondary diffraction Iop has no rela-

tion to Nh, the reflectivity of the primary diffraction.

Furthermore, the primary diffraction should also affect the

incident beam through the second-order extinction effect.

These problems are caused by mixing the observed intensities

with the interactions among the beams indistinctly. To

construct symmetrical formulae on the intensities in the

n-beam case, we thus need to figure out such primitive inter-

actions.

The kinematical reflectivity of the diffraction from the jth

beam to the ith beam can be written as

Nij / jFðhijÞj
2Lp; ð2Þ

where F is the crystal structure factor specified by the

reciprocal vector hij � hi � hj and Lp is the Lorentz–polar-

ization factor. Fig. 2 shows the relation between the reciprocal

vectors and the wavevectors. According to the idea implied in

(1), the contribution to the ith beam through the diffraction hij

can be written as

�Iij ¼ NijIj; ð3Þ

where Ij is the observed intensity of the jth beam. �Iij repre-

sents the amount of modification in the ith beam intensity, and

hence we can add it to Ii without any problem. If we count only

elastic coherent scattering, Ij decreases by the contribution

�Iij. Therefore, total modification of Ii by the jth beam is

�Iij � Iji ¼ NijIj � NjiIi: ð4Þ

The contributions of absorption including inelastic or inco-

herent scattering will be considered in the next subsection.

While I0 should be regarded not as the incident but as the

transmitted intensity, expression (4) is valid for all the beams

(0 � i; j< n).

Now we can reckon up all the interactions among the

beams. First, we consider the three-beam case as the simplest

one, which has six interactions as schematically shown in Fig.

3. Summing up the contributions (4) for each beam, we obtain

a set of simultaneous equations:
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Figure 2
The relation between the reciprocal vectors. The wavevectors denoted by
k0, ki and kj correspond to the incident, the ith and the jth beam,
respectively. The interaction between the ith and the jth beams can be
represented by the reciprocal vectors of the bidirectional diffraction:
hij ¼ �hji ¼ hi � hj.



I0 ¼ Iin þ N01I1 þ N02I2 � N10I0 � N20I0

I1 ¼ N10I0 þ N12I2 � N01I1 � N21I1

I2 ¼ N20I0 þ N21I1 � N02I2 � N12I2;

8><
>: ð5Þ

where Iin is the intensity of the incident X-rays. These simul-

taneous equations can be transformed to a matrix equation,

Iout
¼ Iin

þ TIout; ð6Þ

by constructing the matrix T of the three-beam case as

T ¼

�ðN10 þ N20Þ N01 N02

N10 �ðN01 þ N21Þ N12

N20 N21 �ðN02 þ N12Þ

0
@

1
A: ð7Þ

The intensities of the incident and diffracted beams are

respectively packed into the three-dimensional vectors

Iin
¼

I in

0

0

0
@

1
A and Iout

¼

I0

I1

I2

0
@

1
A: ð8Þ

To get a formal solution of (6), we define a matrix D as

D ¼ E� T

¼

1þ N10 þ N20 �N01 �N02

�N10 1þ N01 þ N21 �N12

�N20 �N21 1þ N02 þ N12

0
B@

1
CA; ð9Þ

where E is the 3� 3 identity matrix. The observed intensities

of the diffracted beams can thereby be calculated as

Iout
¼ D�1Iin

ð10Þ

if D is a regular matrix. Even in the three-beam case, the

actual solution of a diffracted beam is too complicated to be

written down explicitly, although it is possible.

To apply these formulae for a general n-beam case, we just

redefine T as an n� n matrix:

Tij � Nij � �ij

Pn�1

k¼0

Nkj; ð11Þ

where �ij is the Kronecker delta. Cancelled by the subtraction

on the diagonal elements, Nii, which is undefined, does not

appear in the matrix. Both the intensity vectors should also be

extended to n-dimensional ones as

Iin ¼

I in

0

..

.

0

0
BB@

1
CCA and Iout ¼

I0

I1

..

.

In�1

0
BBB@

1
CCCA: ð12Þ

Equation (6) is still valid for these variables; therefore, the

diffraction intensities of a general n-beam case can be

obtained by (10), under the condition that the matrix D, which

is now written as

Dij ¼ �ij 1þ
Pn�1

k¼0

Nkj

� �
� Nij; ð13Þ

is regular.

The properties of D determine whether (6) can be solved or

not. If we assume Nij ¼ Nji by Friedel’s law for the reflectiv-

ities of the Bijvoet pair hij and hji, D becomes a symmetric

matrix, i.e. regular. For X-ray diffraction, it is not practical to

neglect the effects of the Lp factor and anomalous dispersion

that break the assumption. However, D is diagonal dominant

because we expect 0 � Nij � 1. This means that (6) can easily

be solved by a proper numerical method, which is still avail-

able for large n. Thus, Iout can be calculated by (10), although

is not proved to exist in general.

As we see above, a set of diffracted intensities can be

calculated in general n-beam cases. It should be noted that the

solvable simultaneous equations arise from the macroscopic

idea that one beam contributes to other beams as proportional

to its observed intensity. The resulting formulae are also

macroscopic, and not sufficient for real calculations including

the absorption effect. To study the detailed foundations of this

method, we will discuss integration of differential equations

that describe microscopic interactions.

2.2. Integration of the intensity transfer equations

The intensity transfer equations in the n-beam case (Moon

& Shull, 1964) can be summarized as follows with slight

changes in notation:

dI0

dx
¼ � �þ

X
j6¼0

rj0

 !
I0

�0

þ
X
j6¼0

rij

Ij

�j

;

�
dIi

dx
¼ � �þ

X
j6¼i

rji

 !
Ii

�i

þ
X
j6¼i

rij

Ij

�j

:

ð14Þ

Here �i denotes the direction cosine of the ith beam. In

contrast with the macroscopic formulae described in the

previous section, the intensity Ii of the ith beam is not the

observed one but a function of the penetration length x from

the surface of the specimen crystal (see Fig. 1a). The sign on

the left-hand side is determined by the orientation of the

beam, the plus being for transmission and the minus for

reflection. The reflectivity rij from the jth beam to the ith beam

is defined as

rij � QijWð��Þ; ð15Þ

where Qij is the integrated reflectivity per unit volume and

Wð��Þ is the mosaic spread function of the specimen.
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Figure 3
In the three-beam case, there are six interactions between each two of the
beams. The difference �Iij ��Iji causes a multiple diffraction effect,
even if Nij ¼ Nji, which is usually fulfilled for neutron diffraction.



Equations (14) can be regarded as an n-beam extension of

Hamilton–Zachariasen’s equations that describe the second-

order extinction effect on X-ray or neutron diffraction. For a

small crystal, Becker & Coppens (1974) wrote the equations as

@I0

@x0

¼ �ð�þ �ÞI0 þ �I1;

@I1

@x1

¼ �ð�þ �ÞI1 þ �I0;

ð16Þ

where � denotes the linear absorption coefficient and the

interaction � has a value proportional to the integrated

reflectivity per unit length. The coordinates x0 and x1 are along

the directions of the incident and diffracted beams, respec-

tively.

We rewrite (14) in the style of (16) because the signs on the

left-hand side and the direction cosines are introduced only

for planar crystals to reduce the dimension to unity. As we

need not distinguish the incident beam from the diffracted

one, (14) can be expressed in a unified form:

@

@xi

Ii ¼ � �þ
X
j6¼i

rji

 !
Ii þ

X
j6¼i

rijIj; ð17Þ

where @=@xi denotes partial differentiation along the direction

of the ith beam (Hauback et al., 1990).

To integrate (17), we assume a situation in which a small

nearly spherical crystal is fully bathed in the incident X-ray

beam. As illustrated in Fig. 4, we consider beam paths in the

crystal along the direction of the ith beam, then identify one of

the paths by specifying a point s on the cross section S. The

intensity field IiðrÞ defined over the crystal can be written as

Iiðs; xsÞ on the path s, where xs is the penetration length along

the path. The intensities at the two ends of the path s are

Iiðs; 0Þ and Iiðs; lsÞ, respectively, where ls is the length of the

path. Since the whole surface of the crystal is in the incident

beam, the boundary conditions can be written as

Iin
i ¼

R
S

Iiðs; 0Þ ds and Iout
i ¼

R
S

Iiðs; lsÞ ds; ð18Þ

where Iin
i stands for the total input intensity and Iout

i for the

total output intensity that we observe. It is obvious that Iin
0 6¼ 0

for the incident beam and Iin
i ¼ 0 for the diffracted beams

(i 6¼ 0).

With no assumption about the properties of Iiðs; xsÞ, the

intensity can be integrated on the path

Iiðs; lsÞ ¼

Z ls

0

d

dx
Iiðs; xÞ dxþ Iiðs; 0Þ: ð19Þ

Consequently, the integration over the cross section S can be

written asZ
S

Iiðs; lsÞ ds ¼

Z
S

Z ls

0

d

dx
Iiðs; xÞ dx dsþ

Z
S

Iiðs; 0Þ ds: ð20Þ

The integration of the first term on the right-hand side covers

the whole volume V of the crystal; the path hence no longer

needs to be specified by s. With the boundary conditions (18),

a simple expression for the whole crystal is obtained:

Iout
i ¼

Z
V

@

@xi

IiðrÞ drþ I in
i : ð21Þ

Substituting (17) into (21), we get the final integral equation:

Iout
i ¼ � �þ

X
j6¼i

rji

 !Z
V

Ii drþ
X
j 6¼i

rij

Z
V

Ij drþ I in
i : ð22Þ

Note that every integral in this equation depends neither on

the beam direction nor on the path length.

The algebraic notation used in the previous section is

effective again. We introduce internal-intensity vector IV

which consists of the intensity field integrated over the volume

of the crystal as follows:

IV
i �

R
V

IiðrÞ dr: ð23Þ

Thereby, we can rewrite (22) as

Iout
¼ TIV

þ Iin; ð24Þ

where the matrix T is revised to be

Tij � rij � �ij �þ
Xn�1

k¼0

rkj

 !
: ð25Þ

Equation (24), as a result of the integration of the intensity

transfer equations over a small crystal, has the same form as

(6) of the macroscopic formulae, but differs in IV .

To match these two equations, we propose an assumption:

the internal-intensity vector IV is coupled with the output

intensity Iout by an arbitrary operator C as

IV
¼ CIout: ð26Þ

By this assumption, (24) can be rewritten as

Iout
¼ TCIout

þ Iin; ð27Þ
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Figure 4
An integration path along the ith beam is schematically illustrated for a
small crystal that is fully bathed in the incident beam. The position s on
the cross section S specifies the path and its length ls. The intensities at
both the boundaries of the path can be written as Iiðs; 0Þ and Iiðs; lsÞ.



which is almost equivalent to the results of the previous

section. Consequently, the output intensities can be derived by

(10), where D ¼ E� TC.

The operator C is the key to connecting the macroscopic

formulae with the intensity transfer equations as a microscopic

formulation. Dimensional analysis requires that the dimension

of C must be [L]. It may contain information about the size

and form of the specimen crystal, and may even be a linear

operator written as a matrix. But we never expect that its

expression can be determined by any experiment because we

cannot measure the internal intensity fields directly. In the

original method by Soejima et al. (1985), the transmission

factor rh may contain such information although treated as a

scalar. Thus the method can be regarded as a simplified case

that the operator C becomes a scalar C, i.e.

IV ¼ CIout: ð28Þ

The constant value C may be hidden in the Nij, then (6) and

(27) become completely equal. As a result, we can state that

the foundation of the macroscopic formulae is this hypothesis

(28), which means that the observed intensity is proportional

to the total integral of the internal intensity field of the beam

in the crystal.

3. Discussion

To demonstrate this method, an application program nbeam

has been developed for the numerical simulation of the  -scan

experiment invented by Renninger (1937). By a  scan, the

diffraction intensity modulated by the n-beam effect is

recorded during the azimuthal rotation of the specimen crystal

around the primary diffraction vector h1, namely the  axis.

By simulation of the  rotation on a four-circle diffractometer

with convergent and monochromatic incident X-rays (Busing

& Levy, 1967), the program can calculate the n-beam

diffraction intensity on the basis of (27) and the hypothesis

(28) at each  angle where the cross sections rij of the relevant

secondary lattice points are evaluated from the geometry in

the reciprocal space.

In the present discussion, we focus on the two parameters C

and �; all the technical details of the  -scan simulation,

including the evaluation of the rij with the Lp factor and

apparatus functions, is described in a separate article (Nagao,

2005).

We select Si as a specimen because of the extinction rule by

the diamond glide, for which the Renninger effect was

originally found. Setting parameters are determined according

to the lattice constant a ¼ 5:431028 Å, by assuming [100] is

parallel to the ’ axis of a four-circle diffractometer with

unpolarized incident X-rays of Fe K�. The origin of  is

defined by the bisecting position of the primary diffraction. In

this case, the probability of n-beam diffraction is not so large

that the n-beam effect appears as discrete peaks or dips on a

 -scan profile.

The structure factors and � are computed by the analytical

method (Waasmaier & Kirfel, 1995) with the anomalous

dispersion coefficients (Sasaki, 1989).

Fig. 5 shows an example of the  -scan calculation. Umwe-

ganregung peaks appear as a result of the n-beam effect on the

222 diffraction that is forbidden for the space group of

diamond. The dotted line represents the profile for

� ¼ 277 cm�1, which is the linear absorption coefficient for Fe

K�, and the solid line that for no absorption (� ¼ 0). Both the

calculations are carried out for C ¼ 1:0 cm, then normalized

at the maximum point ( ¼ 13:928�) to compare their profiles

with a large difference in the peak height. The peaks are due

to a ten-beam diffraction by eight secondary lattice points of

which  angles are slightly different from each other.

However, the T matrix is sparse because of the extinction rule

due to the crystal symmetry. The main contributions to the left

and right peaks are those from 1�11�11 and from 5�11�11, respectively.

The variation of the peak height is derived from the similar

calculations achieved for large ranges of C and �. The results

displayed in Fig. 6 indicate that the n-beam effect increases

with increasing size of the specimen, and with decreasing �.

Fig. 7 shows the Si 111 profile as another example of the

 -scan simulation. The intensity of the primary diffraction is

large; thus some dips caused by the Aufhellung effect can be
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Figure 5
 -scan profiles of the Si 222 diffraction calculated for C ¼ 1:0 cm. The
solid and dotted lines respectively represent the cases for � ¼ 0 and
� ¼ 277 cm�1. The intensities are normalized at the peak position to
compare profiles that differ in order of magnitude. The secondary lattice
points denoted by the figures coincidentally have close  angles and
produce the two Umweganregung peaks. The left peak mainly comes from
1�11�11 and the right one from 5�111.

Figure 6
The peak intensity in the C–� space for  ¼ 13:928� in Fig. 5. The peak is
higher in the region with large C and small �.



seen. The first and second dips from the left are the results of

the three-beam cases with one secondary diffraction.

Although the diffractions on the secondary lattice points

2�440 and 4�220 are not allowed by the extinction rule, the

diffractions from the primary to secondary lattice point, i.e.

1�55�11 and 3�33�11, respectively, have finite values of the crystal

structure factor, and hence cause the effects.

The deepest dip is from the six secondary lattice points that

coincidentally have almost the same  angles, but only �11�111 is

effective with its corresponding diffraction �22�220. The intensity

profiles given by solid and dotted lines for � ¼ 0 and

277 cm�1, respectively, are normalized at  ¼ 0:0�. In contrast

with the Umweganregung peak for Si 222 shown in Fig. 5, the

dips for � ¼ 277 cm�1 are hardly observed. Fig. 8 shows how

the relative depth of the dip at  ¼ 2:680� changes when C

and � are varied. The dip is remarkable in the region with

large C and small �.

These examples show that the magnitude of the n-beam

effect depends on the specimen size and the absorption of the

specimen. For large absorption, we expect that the Aufhellung

dip would be difficult to measure, whereas the Umweganre-

gung peak can be distinguished from the low base intensity.

From the viewpoint of reducing the n-beam effect for the

precise crystal structure analysis, the results indicate that a

smaller crystal has an advantage for the same �C. It is also

confirmed that the Umweganregung peak may happen to

break the extinction rule even for a small crystal with large �,

where the n-beam effect is negligible.

4. Conclusions

Macroscopic intensity equations in the n-beam case have been

derived from the intensity transfer equations based on the

partial differential equations for small spherical crystals. With

the proposed hypothesis given in (28), it is confirmed that the

equations can be solved by numerical calculation. The

example simulations of the  scan show reasonable intensity

behaviour while the crystal size and the linear absorption

coefficient are varied, indicating that the theory is useful to

estimate the effect of phase-independent n-beam diffraction

intensity.

The author is grateful to Professor A. Okazaki for many

helpful discussions. He also acknowledges the help of Helsinki

University of Technology which allowed him to complete the

present paper.
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Figure 8
The Si 111 intensity in the C–� space affected by the Aufhellung effect.
The surface displays the variation of the intensity at  ¼ 2:680� relative
to that at ¼ 0�. Dotted lines on the base show the direction in which�C
is constant. The depth of the dip is shallow for large � or small C;
therefore, a smaller crystal is recommended to reduce both the n-beam
and absorption effects.

Figure 7
 -scan profiles of Si 111 calculated for C ¼ 1:0 cm. The solid and dotted
lines correspond to the cases � ¼ 0 and � ¼ 277 cm�1, respectively. Both
the profiles are normalized at  ¼ 0�. The n-beam effect appears as dips
by Aufhellung because the primary reflectivity is large.


